

Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа № 10» п. Радуга, АНГО Ставропольский край

СОГЛАСОВАНО

Руководитель структуроного подразделения Центр «Точка Роста»

СОГЛАСОВАНО

Заместитель по УВР МОУ СОШ №10

Зубенко Н.А.

«29» августа 2022 г.

УТВЕРЖДАЮ

Директор МОУ СОШ №10

Боровикова Е.Е.

Приказ № 150

От «29» августа 2022 г.

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА

кружка «Робототехника»

Направленность программы: техническая

Уровень программы: ознакомительный уровень

Возраст обучающихся: 11-12 лет

Класс/классы: 4 класс

Количество детей в группе: 10Срок

реализации: 1 год.

Количество часов в год: 102 часа

Составитель: Фатеев В.А.

п. Радуга

2022 год

Пояснительная записка

Робототехника разработкой прикладная занимающаяся наука, автоматизированных технических систем. Робототехника опирается на такие дисциплины, как электроника, механика, программирование. На современном этапе в условиях введения ФГОС возникает необходимость в организации урочной и внеурочной деятельности, направленной на удовлетворение потребностей ребенка, требований социума в тех направлениях, которые способствуют реализации основных задач научно-технического прогресса. Целью использования Лего-конструирования - является овладение навыками начального технического конструирования, развитие мелкой изучение понятий конструкции и основных свойств (жесткости, прочности, устойчивости), навык взаимодействия в группе. В распоряжение детей предоставлены конструкторы, оснащенные микро-процессором и наборами датчиков. С их помощью школьник может запрограммировать робота - умную машинку на выполнение определенных функций.

Новые стандарты обучения обладают отличительной особенностью - ориентацией на результаты образования, которые рассматриваются на основе системно - деятельностного подхода. Такую стратегию обучения помогает реализовать образовательная среда Лего.

Программа кружка «Робототехника» для 5 - 6 классов соответствует требованиям ФГОС, предназначена для обучающихся уровня основного общего образования.

При составлении данной программы автором использованы следующие нормативно-правовые документы:

- Федеральный закон от 29.12.2012 №273-ФЗ «Об образовании в Российской Федерации»;
- Приказ МОиН РФ от 17 декабря 2010 года №1897 «Об утверждении и введении в действие федерального государственного стандарта основного общего образования (с изменениями и дополнениями);
- Письмо МОиН РФ от 14 декабря 2015 года №09-3564 «О внеурочной деятельности и реализации дополнительных образовательных программ»;
- Стратегия развития отрасли информационных технологий в Российской Федерации на 2014-2020 гг. и на перспективу до 2025 года;

- Государственная программа Российской Федерации «Информационное общество» (2011-2020 годы);

Данная программа составлена и адаптирована на основе авторской программы по «Робототехнике» для 5-6 классов Овсяницкой Л.Ю. Курс программирования робота EV 3 в среде Lego Mindstroms EV3 / Л.Ю. Овсяницкая, Д.Н. Овсяницкий, А.Д. Овсяницкий. 2-е издание., перераб. И доп. – М.: Издательство «Перо», 2016. – 300 с.).

Актуальность кружковой работы заключается в том, что она направлена на формирование творческой личности, умеющей креативно, нестандартно мыслить. Технологические наборы конструктора LEGO MINDSTORMS EV3 ориентированы на изучение основных физических принципов и базовых технических решений, лежащих в основе всех современных конструкций и устройств.

Цели курса:

- 1. саморазвитие и развитие личности каждого ребёнка в процессе освоения мира через его собственную творческую предметную деятельность;
- 2. введение школьников в сложную среду конструирования с использованием информационных технологий;
 - 3. организация занятости школьников во внеурочное время.

Задачи курса:

Знакомство со средой программирования LEGO MINDSTORMS EV3, базовым, ресурсными наборами конструктора LEGO EV3;

Выявить и поддержать творческих детей, мотивированных на профессиональную деятельность и получение высококачественного высшего образования в современных и перспективных областях знаний инженерного профиля;

Сформировать умение самостоятельно решать технические задачи в процессе конструирования моделей (выбор материала, планирование предстоящих действий, самоконтроль, умение применять полученные знания, приемы и опыт в конструировании других объектов и т.д.);

Стимулировать находчивость, изобретательность и поисковую творческую деятельность учащихся, и ориентирование на решение интересных и практически важных комплексных задач;

Познакомить учащихся с основами робототехники и существующими соревнованиями роботов;

Эстетическое, нравственное и трудовое воспитание;

Развить творческие способности;

Сформировать умение работы с научно-технической литературой;

Развить навыки поиска информации и раскрыть возможности сети Интернет для работы над проектом.

Знакомство со средой программирования LEGO Mindstorms EV3.

Усвоение основ программирования, получить умения составления простых и сложных алгоритмов;

Умение использовать системы регистрации сигналов датчиков, понимание принципов обратной связи;

Проектирование роботов и программирование их действий;

Через создание собственных проектов прослеживать пользу применения роботов в реальной жизни;

Формирование умения работать в группе;

Развивать умения излагать мысли в четкой логической последовательности, отстаивать свою точку зрения, анализировать ситуацию и самостоятельно находить ответы на вопросы путем логических рассуждений.

Данная программа предполагает решение инженерных и конструкторских задач, а также обучение объектно-ориентированному программированию и моделированию с использованием конструктора LEGO EV3. Использование конструктора позволяют решать не только типовые задачи, но и нестандартные ситуации, исследовать датчики и поведение роботов, вести собственные наблюдения. Кроме того, работа в команде способствует формированию умения взаимодействовать с соучениками, формулировать, анализировать, критически оценивать, отстаивать свои идеи. При дальнейшем освоении LEGO EV3 становится возможным выполнение серьезных проектов, развитие самостоятельного технического творчества, участие в соревнованиях робототехнике.

Новизна программы

Работа с образовательным конструктором LEGO EV3 позволяет школьникам в форме познавательной игры узнать многие важные идеи и развить необходимые в дальнейшей жизни навыки. При построении модели затрагивается множество проблем из разных областей знания — от теории механики до психологии, — что является вполне естественным.

Актуальность программы

Актуальность данной программы состоит в том, что робототехника в школе представляет учащимся технологии 21 века, способствует развитию их коммуникативных способностей, развивает навыки взаимодействия, самостоятельности при принятии решений, раскрывает их творческий потенциал. Подростки лучше понимают, когда они что-либо самостоятельно создают или изобретают. При проведении занятий по робототехнике этот факт не просто учитывается, а реально используется на каждом занятии.

Реализация этой программы в рамках средней школы помогает развитию коммуникативных навыков учащихся за счет активного взаимодействия детей в ходе групповой проектной деятельности, развивает техническое мышление при работе с 3D редактором LEGO и набором LEGO MINDSTORMS EV3, так же обучает начальным навыкам программирования.

Педагогическая целесообразность программы объясняется формированием высокого интеллекта через мастерство. Целый ряд специальных заданий на наблюдение, сравнение, домысливание, фантазирование служат для достижения этого. Программа направлена на то, чтобы через труд приобщить детей к творчеству.

Важно отметить, что компьютер используется как средство управления моделью; его использование направлено на составление управляющих алгоритмов для собранных моделей. Учащиеся получают представление об особенностях составления программ управления, автоматизации механизмов, моделировании работы систем.

Принцип построения программы

На занятиях создана структура деятельности, создающая условия для творческого развития школьников на различных возрастных этапах и предусматривающая их дифференциацию по степени одаренности.

Основные дидактические принципы программы:

- доступность и наглядность;
- последовательность и систематичность обучения и воспитания;
- учет возрастных и индивидуальных особенностей детей.

Обучаясь по программе, дети проходят путь от простого к сложному, с учетом возврата к пройденному материалу на новом, более сложном творческом уровне.

Отличительные особенности данной программы от уже существующих в этой области заключается в том, что программа ориентирована на применение широкого комплекса различного дополнительного материала о простейших физических законах, лежащих в основе современной физической картины мира, наиболее важных открытиях в области физики.

Программой предусмотрено, чтобы каждое занятие было направлено на овладение основами механики, на приобщение детей к активной познавательной и творческой работе. Процесс обучения строится на единстве активных и увлекательных методов и приемов учебной работы, при которой в процессе усвоения знаний, законов правил у школьников развиваются творческие начала.

Образовательный процесс имеет ряд преимуществ:

- занятия в свободное время;
- обучение организовано на добровольных началах всех сторон (дети, родители, педагоги);
- детям предоставляется возможность удовлетворения своих интересов и сочетания различных направлений и форм занятия;

Сроки реализации программы: Программа составлена с учетом санитарно-гигиенических требований, возрастных особенностей учащихся среднего школьного возраста (11-12 лет), представляет собой систему интеллектуально-развивающих занятий для учащихся и рассчитана на 1 год обучения.

Курс «Робототехника» относится к общеинтеллектуальному направлению развития личности, где дети комплексно используют свои знания.

Практическая работа с конструктором позволяет обучающимся:

- совместно обучаться в рамках одной группы;
- распределять обязанности в своей группе;
- проявлять повышенное внимание культуре и этике общения;
- проявлять творческий подход к решению поставленной задачи;
- создавать модели реальных объектов и процессов;
- решать задачи практического содержания;
- моделировать и исследовать процессы;
- переходить от обучения к учению.

Программа внеурочной деятельности «Легоконструирование» обеспечивает 1-3 уровни воспитательных результатов.

Для реализации программы данный курс обеспечен:

- Базовымнабором LEGO MINDSTORMS EV3
- Программное обеспечение LEGO MINDSTORMS EV3;
- Бесплатной программой LEGO Digital Designer (version 4.3.8) (3D редактор виртуального конструктора LEGO);
 - ноутбуками, принтером, сканером, видео оборудованием.

Планируемые результаты освоения программы по робототехнике:

Личностные результаты:

- 1) Формирование способностей обучающихся к саморазвитию, самообразованию и самоконтролю на основе мотивации к робототехнической и учебной деятельности;
- 2) Формирование современного мировоззрения, соответствующего современному развитию общества и науки;
- 3) Формирование коммуникативной и ИКТ-компетентности для успешной социализации и самореализации в обществе.

Метапредметные результаты:

- 1) умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности;
- 2) умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
- 3) умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;
- 4) умение оценивать правильность выполнения учебной задачи, собственные возможности её решения;
- 5) владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности;
- 6) умение определять понятия, создавать обобщения, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;
- 7) умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач;

Предметные результаты по математике и информатике:

- 8) овладение простейшими способами представления и анализа статистических данных;
- 9) развитие умений применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин;
 - 10) формирование информационной и алгоритмической культуры;
- 11) формирование представления об основных изучаемых понятиях: информация, алгоритм, модель и их свойствах;
- 12) развитие алгоритмического мышления, необходимого для профессиональной деятельности в современном обществе.

Методы организации учебного процесса.

- <u>Информационно рецептивный метод</u> (предъявление педагогом информации и организация восприятия, осознания и запоминание обучающимися данной информации).
- <u>Репродуктивный метод</u> (составление и предъявление педагогом заданий на воспроизведение знаний и способов умственной и практической деятельности, руководство и контроль за выполнением; воспроизведение воспитанниками знаний и способов действий по образцам, произвольное и непроизвольное запоминание).
- <u>Метод проблемного изложения</u> (постановка педагогом проблемы и раскрытие доказательно пути его решения; восприятие и осознание обучающимися знаний, мысленное прогнозирование, запоминание).
- <u>Эвристический метод</u> (постановка педагогом проблемы, планирование и руководство деятельности учащихся; самостоятельное решение обучающимися части задания, непроизвольное запоминание и воспроизведение).
- <u>Исследовательский метод</u> (составление и предъявление педагогом проблемных задач и контроль за ходом решения; самостоятельное планирование обучающимися этапов, способ исследования, самоконтроль, непроизвольное запоминание).

В организации учебной познавательной деятельности педагог использует также словесные, наглядные и практические методы.

Словесные методы. Словесные методы педагог применяет тогда, когда главным источником усвоения знаний обучающимися является слово (без опоры на наглядные способы и практическую работу). К ним относятся: рассказ, беседа, объяснение и т.д.

Наглядные методы. К ним относится методы обучения с использованием наглядных пособий.

Практические методы. Методы, связанные с процессом формирования и совершенствования умений и навыков обучающихся. Основным методом является практическое занятие.

Дидактические средства.

В ходе реализации образовательной программы педагогом используются дидактические средства: учебные наглядные пособия, демонстрационные

устройства, технические средства.

Форма подведения итогов освоения программы «Робототехника»

Система оценивания – безотметочная. Используется только словесная оценка достижений учащихся.

Форма подведения итогов реализации программы – игры, соревнования, конкурсы, выставки.

Контроль предполагает выявление уровня освоения учебного материала при изучении, как отдельных разделов, так и всей программы в целом.

Содержание программы

Задача данного курса - познакомить обучающихся с конструктором Lego Mindstorms EV3. Научить собирать базовые конструкции роботов, программировать их под определенные задачи, разобрать базовые решения наиболее распространенных задач-соревнований.

Курс рассчитан на делающих первые шаги в мир робототехники с помощью конструктора Lego Mindstorms EV3. Все примеры роботов в этом курсе сделаны с помощью конструктора Lego Mindstorms EV3, программирование роботов объясняется на примере среды разработки Lego Mindstorms EV3.

Раздел 1 - Введение

Вводный урок. Техника безопасности при работе с компьютером в кабинете робототехики. Правила работы при работе с конструктором. Правило работы с конструктором и электрическими приборами набора LEGO WeDo и Lego Mindstorms EV3. Робототехника в Космической отросли, робототехника на службе МЧС. Демонстрация передовых технологических разработок, используемых в Российской Федерации.

Формы занятий: лекция, беседа, индивидуальная работа, презентация, видеоролик.

Раздел 2 - Знакомство с конструктором Lego

Знакомство с набором Lego Mindstorms Education EV3.

Понятия основных составляющими частей среды конструктора, цвет, формы и размеры деталей.

Формы занятий: лекция, беседа, презентация.

Раздел 3 - Знакомство с программным обеспечением и оборудованием

Изучение учениками визуальной среды программирования Lego Mindstorms EV3 Home Edition, её интерфейса и блоков.

Изучение микрокомпьютера (модуль EV3) набора LEGO EV3, его интерфейса, встроенного в меню и возможностей программирования блоков.

Модуль EV3 служит центром управления и энергетической станцией робота.

Исследование моторов и датчиков набора LEGO EV3:

Большой мотор - позволяет запрограммировать точные и мощные действия робота.

Средний мотор — позволяет сохранять точность движений робота, компактный размер механизма отличается быстрой реакцией движений.

Ультразвуковой датчик - использует отраженные звуковые волны для измерения расстояния между датчиком и любыми объектами на своем пути.

Датчик цвета – помогает распознать семь различных цветов и определить яркость цвета.

Датчик касания – распознает три условия: прикосновение, щелчок, отпускание.

Аккумуляторная батарея — экономичный, экологически безвредные и удобный источник энергии для робота.

Формы занятий: лекция, беседа, индивидуальная работа, решение проблемы, практическая работа.

Раздел 4 - Конструирование заданных моделей EV3

Учащиеся построят и запрограммируют модель *«Простой робот»*, которая поможет на практике изучить работу **модуля EV3**. Производится подключение больших моторов к модулю через специальные черные кабеля набора.

Работа с моделью «Робот с датчиком расстояния» позволит узнать

учащимся работу ультразвукового датчика, его максимальные и минимальные значения. Различные способы программирования датчика позволит исследовать работу двигателей и движение робота.

Изучение датчика цвета, проводится во время конструирования и программирования модели «*Робот с датчиком цвета*», учащиеся проводят исследование работы датчика и его особенности. При разных видах программирования робота, наблюдается изменение в движении двигателей.

Также учащиеся соберут такие модели как: цветосортировщик, гиробой, щенок, робот рука.

Формы занятий: лекция, беседа, индивидуальная работа, решение проблемы.

Раздел 5 - Индивидуальная проектная деятельность

Создание собственных моделей в группах (например - часы со стрелками, гимнаст EV3, робот-художник EV3 Print3rbot, гоночная машина формула 1 EV3, мойщик пола, робот с клешней, селеноход, приводная платформа EV 3 на гусеничном ходу).

Соревнование на скорость по строительству пройденных моделей.

Работа с программой LEGO Digital Designer (виртуальный конструктор Лего).

LEGO Digital Designer 4 - программа для создания различных 3D-объектов на основе виртуальных деталей конструктора LEGO от самих разработчиков этого популярного конструктора. этом Лего, как и в настоящем конструкторе, можно использовать огромное разнообразие существующих на данный момент LEGO-элементов.

Программа LEGO Digital Designer включает примерно 760 типов элементов. Выбранной детали можно присвоить любой цвет. Как и в обычных 3D-редакторах, рабочую область программы можно приближать и удалять, разворачивать под любым углом, свободно перемещаться по ней. Задний фон можно добавить или поменять в режиме просмотра готовой виртуальной модели LEGO. Интерфейс программы очень прост и удобен, поэтому даже самому маленькому ребенку будет несложно разобраться с Виртуальным конструктором Лего. Программа поддерживает два режима конструирования: вы можете начать

все "с нуля" и воплотить свои даже немыслимые фантазии в созданных моделях или дополнить почти готовые модели, что рекомендуется начинающим пользователям.

Раздел 6 - Повторение изученного материала. Подведение итогов за год.

Тематическое планирование

		Количе	Теория	Практика		
№	Название раздела/ темы занятия	ство	(кол-во	(кол-во		
		часов	часов)	часов)		
1.	Введение					
1.1	Техника безопасности при работе с компьютером.	3	1	2		
	Правила работы с конструктором.		1	2		
2	Знакомство с конструктором Lego					
2.1	Lego Mindstorms EV3.	3	1	2		
3	Знакомство с программным обеспечением и оборудованием					
3.1	Визуальная среда программирования	3	1	2		
3.2	Программный интерфейс (микрокомпьютер).	3	1	2		
3.2	Моторы. Датчики.	3	1	2		
4	Конструирование заданных моделей WeDo					
4.1	Майло - научный вездеход.	3	1	2		
4.2	Тяга, ходьба, толчок.	3	1	2		
4.3	Скорость и езда.	3	1	2		
4.4	Прочные конструкции, рычаг.	3	1	2		
4.5	Перемещение материалов, подъем.	3	1	2		
4.6	Движение, вращение, поворот, рулевой механизм.	3	1	2		
5	Конструирование заданных моделей EV3					
5.1	Робот Учитель	9	2	7		
5.2	Цветосортировщик	9	2	7		
5.3	Гиробой	9	2	7		
5.4	Щенок	9	2	7		

5.5	Робот рука	9	2	7		
6	Индивидуальная проектная деятельность					
6.1	Создание собственных моделей в группах	12	3	9		
6.2	Соревнование на скорость по строительству пройденных моделей	6	1	5		
6.3	Работа с программой LEGO Digital	6	1	5		
6.4	Повторение изученного материала	3	1	2		
	Всего	102 ч				

Литература

- 1. Овсяницкая Л.Ю. Курс программирования робота EV 3 в среде Lego Mindstroms EV3 / Л.Ю. Овсяницкая, Д.Н. Овсяницкий, А.Д. Овсяницкий. 2-е издание., перераб. И доп. М.: Издательство «Перо», 2016. 300 с.
- 2. Котегова И.В. Рабочая программа «Технология применения программируемых робототехнических решений на примере платформы LEGO MINDSTORMS Education EV3»
- 3. Асмолов А.Г. Формирование универсальных учебных действий в основной школе: от действия к мысли Москва: Просвещение, 2011. 159 С.